Механические свойства деталей. Черчение. характеристики упругого состояния

Закон Гука

Как известно, различные металлы и сплавы имеют разные механичес­кие и технологические свойства, которые предопределяют качество дета­лей машин, а также обрабатываемость металла. Эти свойства металла выявляют соответствующими испытаниями на растяжение, сжатие, изгиб, твердость и др.

Испытание на растяжение. Чтобы определить прочность металла, работающего на растяжение, изготовляют образец 1 и устанавливают его в зажимы (или захваты) 2 разрывной машины. Для этих целей чаще всего ис­пользуют машины с гидравлической системой передачи усилия или с вин­товой системой.

Растягивающая сила F (рис. 51) создает напряжение в испытываемом об­разце и вызывает его удлинение. Когда напряжение превысит прочность об­разца, он разорвется.

Рис. 51

Результаты испытания обычно изображают в виде диаграммы. По оси абсцисс откладывают нагрузку F, по оси ординат - абсолютное удлине­ние?l.

Из диаграммы видно, что вначале образец удлиняется пропорционально нагрузке. Прямолинейный участок OA соответствует обратимым, упругим деформациям. При разгрузке образец принимает исходные размеры (этот процесс описывается все тем же прямолинейным участком кривой). Ис­кривленный участок АС соответствует необратимым, пластическим дефор­мациям. При разгрузке (штриховая прямая СВ) образец не возвращается к начальным размерам и сохраняет некоторую остаточную деформацию.

От точки С образец удлиняется без увеличения нагрузки. Горизонталь­ный участок СМ диаграммы называется площадкой текучести. Напряжение, при котором происходит рост деформаций без увеличения нагрузки, называется пределом текучести.

Как показывают исследования, текучесть сопровождается значительными взаимными сдвигами кристаллов, в результате чего на поверхности образца по­являются линии, наклонные к оси образца под углом 45°. Претерпев состояние текучести, материал снова обретает способность сопротивляться растяжению (упрочняется), и диаграмма за точкой М поднимается вверх, хотя гораздо бо­лее полого, чем раньше. В точке D напряжение образца достигает своей наи­большей величины, и на образце появляется резкое местное сужение, так назы­ваемая шейка. Площадь сечения шейки быстро уменьшается и, как следст­вие, происходит разрыв образца, что на диаграмме соответствует положению точки К. Предел прочности образца определяют по формуле о пч = F D / S, где: S пч - предел прочности;

F D - нагрузка, при которой через определенный промежуток време­ни наступает разрушение растянутого образца, Н (кгс); S - площадь поперечного сечения образца в исходном положении, м 2 (мм 2).

Обычно при испытании различных металлов и сплавов на растяжение определяют относительное удлинение е - отношение прироста длины об­разца до разрыва к начальной длине образца. Его определяют по формуле? = ?l/l 0 -100,

где: ? - относительное удлинение;

L = l 1 - I 0 - абсолютное удлинение; l 0 - начальная длина образца; l 1 - длина образца после испытания. Экспериментально было установлено, что напряжение в материале при упругой деформации возрастает пропорционально относительному удлине­нию образца. Эта зависимость получила название закона Г у к а.

Для одностороннего (продольного) растяжения закон Гука имеет вид о = Е-?,

где: о = F/s - нормальное напряжение; F - растягивающая сила; s - площадь поперечного сечения;

Относительное удлинение;

Е - постоянная величина, зависящая от материала стержня.

Примечание. В системе СИ единицей измерения напряжений служит Пас­каль - напряжение, вызванное силой 1 ньютон (Н), равномерно распределенной по нормальной к ней поверхности площадью 1 м 2 .

1 Па = 0,102 10 -4 кгс/см 2 ;

1 Па = 0,102 10 -6 кгс/мм 2 ;

1 кгс/см 2 = 9,81 10 4 Па;

1 кгс/мм 2 = 9,81 10 6 Па.

В связи с тем, что единица напряжения паскаль очень мала, приходится пользо­ваться более крупной единицей - мегапаскаль 1 МП а = 10 6 Па.

Госстандарт допускает к применению единицу ньютон на квадрат­ный миллиметр (Н/мм 2). Числовые значения напряжений, выраженные в Н/мм 2 и в МПа, совпадают. Единица Н/мм 2 удобна и потому, что размеры на чер­тежах проставляют в миллиметрах.

Коэффициент пропорциональности Е называется модулем упругости при растяжении или модулем Юнга. Каков физический смысл моду­ля упругости? Обратимся к диаграмме растяжения образца (см. рис. 51, II). Модуль упругости на ней пропорционален тангенсу угла наклона а к оси аб­сцисс. Значит, чем круче прямая OA, тем жестче материал, и тем большее сопротивление оказывает он упругой деформации.

Для характеристики металла важно знать не только относительное удли­нение?, но и относительное сужение площади поперечного сечения, кото­рое также позволяет характеризовать пластичность материала.

Естественно, что при растяжении образца площадь поперечного сечения уменьшается. В месте разрыва она будет наименьшей. Относительное суже­ние определяют по формуле? = (S 0 - S 1) / S 0 100%,

где: ? - относительное сужение;

S 0 - площадь поперечного сечения образца до испытания; S 1 - площадь сечения образца в месте разрыва (в шейке).

Чем больше относительное удлинение и относительное сужение попереч­ного сечения образца, тем более пластичен материал.

Кроме трех рассмотренных характеристик механических свойств метал­лов: предела прочности (o пч), относительного удлинения (е) и относитель­ного сужения (?), можно определить, пользуясь записанной на машине ди­аграммой, предел упругости (о y) и предел текучести (о m),

Испытание на сжатие. Для испытания металлов на сжатие (рис. 53) чаще всего применяют прессы, в которых сжимающая сила образуется путем увеличения гидравлического давления. При сжатии образца из плас­тичного материала, например малоуглеродистой стали (рис. 53, I), его по­перечные размеры увеличиваются, в то время как длина значительно уменьшается. Нарушение целостности образца при этом не происходит (рис. 54). Из диаграммы сжатия (рис. 53, II) видно, что в начальной стадии нагружения деформация возрастает пропорционально нагрузке, затем де­формация резко возрастает при незначительном увеличении на­грузки, далее рост деформации постепенно замедляется вследст­вие увеличения сечения образца.


Рис. 52


Рис. 53

Образцы из хрупких материалов при сжатии разрушаются (рис. 54, III). Например, стержень из чугуна при достижении разруша­ющей нагрузки распадается на части, которые сдвигаются относительно друг друга по косым площадкам (рис. 53, III).

Рис. 54

Для сжатия полностью применим закон Гука, согласно которому мате­риалы противодействуют сжатию пропорционально приложенной силе до предела упругости. Модуль упругости при сжатии для большинства мате­риалов равен модулю упругости при растяжении. Исключение составля­ют только некоторые хрупкие материалы - бетон, кирпич и т. д. Анало­гия в характере напряжения сжатия с напряжением растяжения позволяет описывать эти процессы одними и теми же математическими уравнени­ями.

Испытание на изгиб . При испытании на изгиб образец (брус) укла­дывают концами на две опоры и в середине нагружают (рис. 55). О сопро­тивлении материала изгибу судят по величине прогиба образца.


Рис. 55

Представим теперь себе в брусе воображаемые продольные волокна. При деформации изгиба волокна одной зоны сжимаются, другой - растягива­ются (рис. 55, II).

Между зонами сжатия и растяжения расположен нейтральный слой, во­локна которого не подвергаются деформации, то есть их длина не изменяет­ся. Из рис. 55 видно, что, чем больше волокна расположены от нейтрально­го слоя, тем большую деформацию они испытывают. Таким образом, мож­но сделать вывод, что при изгибе в поперечных сечениях бруса под действи­ем внутренних сил возникают нормальные напряжения сжатия и растяже­ния, величина которых зависит от положения рассматриваемых точек в се­чении. Наибольшие напряжения принято обозначать: в зоне сжатия - ? max , в зоне растяжения - ? m ах. В точках, расположенных на нейтраль­ной оси, напряжения равны нулю. Нормальные напряжения, возникающие в различных по высоте точках поперечного сечения, возрастают пропорци­онально расстоянию от нейтрального слоя и могут быть рассчитаны по фор­муле? = (Е z) / р,

где: ? - нормальные напряжения;

z - расстояние от интересующего нас волокна до нейтрального слоя; Е - модуль упругости; р - радиус кривизны нейтрального слоя.

Испытание на срез. При испытании на срез (рис. 56) металличес­кий образец 3, имеющий цилиндрическую форму, вставляют в отверстие приспособления, представляющего собой вилку 1 и диск 2. Машина вы­тягивает диск из вилки, вследствие чего происходит перемещение сред­ней части образца относительно крайних его частей. Рабочая площадь S (площадь среза) равна удвоенной площади поперечного сечения образца, так как срез происходит одно­временно по двум плоско­стям.

Рис. 56

При срезе все точки дефор­мируемых сечений, ограни­ченных плоскостями действу­ющих сил, смещаются на рав­ные расстояния, то есть мате­риал в этих точках испытыва­ет одинаковую деформацию. Это означает, что во всех точ­ках сечения будут одинако­вые действующие напряже­ния.

Величину напряжения оп­ределяют делением равнодействующей F внутренних (поперечных) сил на площадь поперечного сечения стержня S. Так как вектор напряжения рас­положен в плоскости сечения, в ней возникает касательное напряжение, определяемое по формуле r ср = F/2S, где: r ср - величина напряжения среза;

F - равнодействующая сила;

S - площадь поперечного сечения образца. Срез - это разрушение в результате сдвига одной части материала отно­сительно другой, возникающее под действием касательных напряжений. Для деформации сдвига справедлив закон Гука: в зоне упругости напряже­ния прямо пропорциональны относительным деформациям. Коэффициен­том пропорциональности служит величина модуля упругости при сдвиге G. Относительный сдвиг (угол сдвига) обозначается у. Таким образом, закон Гука для деформации сдвига имеет вид t = Gg, где: r = F/S - касательное напряжение; F - касательная сила; S - площадь сдвигающихся слоев; y - угол сдвига;

G - модуль сдвига, зависящий от материала тела.

Испытание на кручение. При испытании образцов на кручение один конец трубы 2 закрепляют неподвижно 1, другой вращают с помо­щью рычага 3 (рис. 57). Кручение характеризуется взаимным поворотом поперечных сечений стержня, вала, трубы под влиянием моментов (пар сил), действующих в этих сечениях. Если на поверхности стержня до приложения сил кручения нанести прямолинейные образующие (рис. 57, I), то после скручивания эти образующие принимают вид винтовых линий, а каждое поперечное сечение по отношению к соседнему повора­чивается на некоторый угол (см. рис. 57, II). Это значит, что в каждом сечении происходит деформация сдвига и возникают касательные на­пряжения. Степень смещения материала при кручении определяется уг­лами закручивания? и сдвига у. Абсолютная величина кручения опре­деляется углом закручивания рассматриваемого сечения относительно неподвижно закрепленного сечения. Наибольший угол закручивания получается на самом большом расстоянии от закрепленного конца стержня.


Рис. 57

Отношение угла закручивания? к длине участка I, подвергающегося кручению, называют относительным углом закручива­ния Q = ? / Z,

где: Q - относительный угол закручивания;

Угол закручивания;

Испытание на твердость. При опре­делении твердости материалов в завод­ской и лабораторной практике пользу­ются двумя методами: методом Бринелля и методом Роквелла.

Метод Бринелля. Этот метод основан на том, что при измерении твердости металлов стальной шарик 1 диаметром 2,5; 5 или 10 мм вдавливает­ся в поверхность испытуемого образца 2 при заданной нагрузке 3 от 625 Н до 30 кН (62,5 до 3000 кгс). После удаления нагрузки измеряется диаметр d отпе­чатка, оставшегося на поверхности об­разца (рис. 58), который тем меньше, чем тверже металл.

Рис. 58

Примечание. Стальной шарик должен быть выполнен из термически обрабо­танной стали твердостью не менее НВ850. Шероховатость поверхности R z не ни­же параметра 0,100 по ГОСТ 2789-73. На поверхности шарика не должно быть де­фектов, видимых с помощью лупы при 5-кратном увеличении.

Число твердости по Бринеллю вычисляются по формуле

D - диаметр шарика, мм;

d - диаметр отпечатка, мм.

Специальная таблица (ГОСТ 9012-59) дает возможность определить твер­дость наиболее распространенных металлов.

Следует отметить, что между твердостью стали по Бринеллю НВ и преде­лом ее прочности о пч для обычных углеродистых стилей существует соот­ношение, выраженное формулой о пч = 0,36 НВ.

Следовательно, зная твердость стали по Бринеллю, можно вычислить и предел прочности при растяжении.

Эта формула имеет большое практическое значение. Методом Бринел­ля обычно определяют твердость незакаленных сталей, чугуна, цветных металлов. Твердость же закаленных сталей измеряют на приборе Рок­велла.

Метод Роквелла. При измерении твердости металлов по этому методу наконечник стандартного типа (алмазный конус для твердых ме­таллов или стальной шарик - для более мягких) вдавливается в испыту­емый образец под действием двух последовательно прилагаемых нагру­зок: предварительной (F 0) 100 Н (10 кгс) и окончательной (F 1) 1000 Н (100 кгс) - для шарика и 1500 Н (150 кгс) - для алмазного конуса.

Под действием предварительной нагрузки конус проникает в металл на глубину h 0 (рис. 59,I); при добавлении к предварительной основной нагруз­ки глубина отпечатка увеличивается до h (рис. 59, II) и после снятия основ­ной нагрузки остается равной h 1 (рис. 59, III).


Рис. 59

Глубина отпечатка h = h 1 - h 0 , полученная за счет основной нагрузки F 1 , характеризует твердость по Роквеллу. Испытания по методу Роквелла производят специальными приборами, снабженными индикатором, который показывает число твердости сразу по окончании испытания.

Индикатор имеет две шкалы: черную (С) для испытания алмазным кону­сом и красную (В) для испытания шариком.

Твердость по Роквеллу измеряется в условных единицах.

Пример обозначения твердости по Роквеллу: HRC50 (твердость 50 по шкале С).

Определение твердости тарированными на­пильниками . Твердость HRC может быть определена с помощью ряда напильников, подвергнутых термической обработке на различную твер­дость насечки. Обычно интервал насечек колеблется от 3 до 5 единиц HRC. Тарирование напильников производится по эталонным плиткам, твердость которых заранее точно определена на приборе.

Твердость испытуемой детали Определяется двумя напильниками с ми­нимальным интервалом по твердости, один из которых может только сколь­зить по детали, а второй ее слегка царапать. Если напильник с НRС62 цара­пает металл, а с HRC59 только скользит по поверхности детали, то твер­дость HRC60-61.

Практически этим способом пользуются для установления твердости ин­струментов (разверток, фрез и т. п.), твердость которых измерить иным спо­собом бывает трудно.

Существуют и другие способы определения твердости (способ Виккерса, эле­ктромагнитные способы и др.), которые в данной книге не рассматриваются.

Методы определения механических свойств металлов разделяют на:
- статические, когда нагрузка растет медленно и плавно (испытания на растяжение, сжатие, изгиб, кручение, твердость);
- динамические, когда нагрузка растет с большой скоростью (испытания на ударный изгиб);
- циклические, когда нагрузка многократно изменяется по величине и направлению (испытания на усталость).

Испытание на растяжение

При испытании на растяжение определяют предел прочности (σ в), предел текучести (σ т), относительное удлинение (δ ) и относительное сужение (ψ ). Испытания проводят на разрывных машинах c использованием стандартных образцов с площадью поперечного сечения Fo и рабочей (расчетной) длиной lo. В результате проведения испытаний получают диаграмму растяжения (рис. 1). На оси абсцисс указывается значение деформации, на оси ординат – значение нагрузки, которая прилагается к образцу.
Предел прочности (σ в) – это максимальная нагрузка, которую выдерживает материал без разрушения, отнесенная к начальной площади поперечного сечения образца (Pmax/Fo).


Рис. 1. Диаграмма растяжения

Необходимо отметить, что при растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается. Истинное напряжение определяется делением действующей в определенный момент нагрузки на площадь, которую образец имеет в этот момент. Истинные напряжения в повседневной практике не определяют, а пользуются условными напряжениями, считая, что поперечное сечение Fо образца остается неизменным.

Предел текучести (σ т) – это нагрузка, при которой происходит пластическая деформация, отнесенная к начальной площади поперечного сечения образца (Рт / Fo). Однако при испытаниях на растяжение у большинства сплавов площадки текучести на диаграммах нет. Поэтому определяется условный предел текучести (σ 0.2) - напряжение, которому соответствует пластическая деформация 0,2%. Выбранное значение 0,2% достаточно точно характеризует переход от упругих деформаций к пластическим.

К характеристикам материала относят также предел упругости (σ пр), под которым подразумевают напряжение, при котором пластическая деформация достигает заданного значения. Обычно используют значения остаточной деформации 0,005; 0,02; 0,05%. Таким образом, σ 0,05 = Рпр / Fo (Рпр – нагрузка, при которой остаточное удлинение составляет 0,05%).

Предел пропорциональности σ пц = Рпц / Fo (Рпц – максимальная нагрузка, при действии которой еще выполняется закон Гука).

Пластичность характеризуется относительным удлинением (δ ) и относительным сужением (ψ ):

δ = [(lk - lo)/lo]∙100% ψ = [(Fo – Fk)/Fo]∙100%,

где lk - конечная длина образца; lo и Fo - начальные длина и площадь поперечного сечения образца; Fk - площадь поперечного сечения в месте разрыва.

Для малопластичных материалов испытания на растяжение вызывают затруднения, поскольку незначительные перекосы при установке образца вносят существенную погрешность в определение разрушающей нагрузки. Такие материалы, как правило, подвергают испытанию на изгиб.

Испытание на твердость

Нормативные документы:

  • ГОСТ 8.062—85 «Государственная система обеспечения единства измерений. Государственный специальный эталон и государственная поверочная схема для средств измерений твердости по шкалам Бринелля»
  • ГЭТ 33—85 «Государственный специальный эталон единиц твердости по шкалам Бринелля»
  • Твердость – способность материала оказывать сопротивление проникновению в него другого, более твердого тела – индентора. Твердость материала определяют методами Бринелля, Роквелла, Виккерса, Шора (рис.2).

    а б в

    Рис. 2. Схемы определения твердости по Бринеллю(а), Роквеллу(б) и Виккерсу(в)

    Твердость металла по Бринеллю указывается буквами НВ и числом. Для перевода числа твердости в систему СИ пользуются коэффициентом К = 9,8 106, на который умножают значение твердости по Бринеллю: НВ = НВ К, Па.

    Метод определения твердости по Бринеллю не рекомендуется применять для сталей с твердостью свыше НВ 450 и цветных металлов с твердостью более 200 НВ.

    Для различных материалов установлена корреляционная связь между пределом прочности (в МПа) и числом твердости НВ: σ в ≈ 3,4 НВ - для горячекатаных углеродистых сталей; σ в ≈ 4,5 НВ - для медных сплавов, σ в ≈ 3,5НВ - для алюминиевых сплавов.

    Определение твердости методом Роквелла осуществляют путем вдавливания в металл алмазного конуса или стального шарика. Прибор Роквелла имеет три шкалы – А,В,С. Алмазный конус применяют для испытания твердых материалов (шкалы А и С), а шарик – для испытания мягких материалов (шкала В). В зависимости от шкалы твердость обозначается буквами HRB, HRC, HRA и выражается в специальных единицах.

    При измерении твердости по методу Виккерса производят вдавливание в поверхность металла (шлифуемую или полируемую) четырехгранной алмазной пирамиды. Этот метод применяют для определения твердости деталей малой толщины и тонких поверхностных слоев, которые имеют высокую твердость (например, после азотирования). Твердость по Виккерсу обозначают HV. Перевод числа твердости HV в систему СИ производится аналогично переводу числа твердости НВ.

    При измерении твердости по методу Шора шарик с индентором падает на образец, перпендикулярно его поверхности, а твердость определяется по высоте отскока шарика и обозначается HS.

    Метод Кузнецова - Герберта - Ребиндера - твёрдость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл.

    Испытание на ударную вязкость

    Ударная вязкость характеризует способность материала оказывать сопротивление динамическим нагрузкам и проявляющейся при этом склонности к хрупкому разрушению. Для испытания на удар изготовляют специальные образцы с надрезом, которые потом разрушают на маятниковом копре (рис.3). По шкале маятникового копра определяют работу К, затраченную на разрушение, и рассчитывают основную характеристику, получаемую в результате этих испытаний – ударную вязкость. Она определяется отношением работы разрушения образца к площади его поперечного сечения и измеряется в МДж/м 2 .

    Для обозначения ударной вязкости применяют буквы КС и добавляют третью, которая указывает на вид надреза на образце: U, V, T. Запись KCU означает ударную вязкость образца с U-подобным надрезом, KCV - с V-подобным надрезом, а KCT - с трещиной, созданной в основании надреза. Работа разрушения образца при проведении ударных испытаний содержит две составляющие: работу зарождения трещины (Аз) и работу распространения трещины (Ар).

    Определение ударной вязкости особенно важно для металлов, которые работают при низких температурах и выявляют склонность к хладноломкости, то есть к снижению ударной вязкости при понижении температуры эксплуатации.


    Рис. 3. Схема маятникового копра и ударного образца

    При проведении ударных испытаний образцов с надрезом при низких температурах определяют порог хладноломкости, который характеризует влияние снижения температуры на склонность материала к хрупкому разрушению. При переходе от вязкого к хрупкому разрушению наблюдается резкое снижение ударной вязкости в интервале температур, который имеет название температурный порог хладноломкости. При этом изменяется строение излома от волокнистого матового (вязкое разрушение) к кристаллическому блестящему (хрупкое разрушение). Порог хладноломкости обозначают интервалом температур (tв.– tхр.) или одной температурой t50, при которой в изломе образца наблюдается 50% волокнистой составляющей или же величина ударной вязкости снижается в два раза.

    О пригодности материала к работе при заданной температуре судят по температурному запасу вязкости, который определяется по разнице между температурой эксплуатации и переходной температурой хладноломкости, и чем он больше, тем надежнее материал.

    Испытание на усталость

    Усталость – процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, которые приводят к образованию трещин и разрушений. Усталость металла вызывается концентрацией напряжений в отдельных его объемах (в местах скопления неметаллических и газовых включений, структурных дефектов). Свойство металла сопротивляться усталости называется выносливостью.

    Испытания на усталость проводят на машинах для повторно-переменного изгибания вращающегося образца, закрепленного одним или обоими концами, или на машинах для испытаний на растяжение-сжатие, или на повторно-переменное скручивание. В результате испытаний определяют предел выносливости, который характеризует сопротивление материала усталости.

    Предел выносливости – максимальное напряжение, при действии которого не происходит усталостного разрушения после базового количества циклов нагружения.

    Предел выносливости обозначается σ R , где R - коэффициент асимметрии цикла.

    Для определения предела выносливости проводят испытания не менее десяти образцов. Каждый образец испытывают только при одном напряжении до разрушения или при базовом числе циклов. Базовое число циклов должно быть не ниже 107 нагружений (для стали) и 108 (для цветных металлов).

    Важной характеристикой конструкционной прочности является живучесть при циклическом нагружении, под которой понимают продолжительность эксплуатации детали от момента зарождения первой макроскопической усталостной трещины размером 0,5…1 мм до окончательного разрушения. Живучесть имеет особое значение для надежности эксплуатации изделий, безаварийная работа которых поддерживается путем раннего обнаружения и предотвращения дальнейшего развития усталостных трещин.

    Критерии выбора материала

    Свойства – это количественная или качественная характеристика материала, определяющая его общность или различие с другими материалами.
    Выделяют три основные группы свойств: эксплуатационные, технологические и стоимостные, которые лежат в основе выбора материала и определяют техническую и экономическую целесообразность его применения. Первостепенное значение имеют эксплуатационные свойства.
    Эксплуатационными называют свойства материала, которые определяют работоспособность деталей машин, приборов и инструментов, их силовые, скоростные, стоимостные и другие технико-эксплуатационные показатели.
    Работоспособность подавляющего большинства деталей машин и изделий обеспечивает уровень механических свойств, которые характеризуют поведение материала под действием внешней нагрузки. Так как условия нагружения деталей машин разнообразны, то механические свойства включают большую группу показателей.
    В зависимости от изменения во времени нагрузки подразделяют на статические и динамические. Статическое нагружение характеризуется малой скоростью изменения своей величины, а динамические нагрузки изменяются во времени с большими скоростями, например, при ударном нагружении. Кроме того, нагрузки подразделяют на растягивающие, сжимающие, изгибающие, скручивающие и срезывающие. Изменение нагрузки может иметь периодически повторяющийся характер, вследствие чего их называют повторно- переменными или циклическими. В условиях эксплуатации машин воздействие перечисленных нагрузок может проявляться в различных сочетаниях.
    Под воздействием внешних нагрузок, а также структурно-фазовых превращений в материале конструкций возникают внутренние силы, которые могут быть выражены через внешние нагрузки. Внутренние силы, приходящиеся на единицу площади поперечного сечения тела, называют напряжениями . Введение понятия напряжений позволяет проводить расчеты на прочность конструкций и их элементов.
    В простейшем случае осевого растяжения цилиндрического стержня напряжение σ опеределяют как отношение растягивающее силы Р к начальной площади поперечного сечения Fo , т.е.

    σ = P/Fo

    Действие внешних сил приводит к деформации тела, т.е. к изменению его размером и формы. Деформация, исчезающая после разгрузки, называется упругой, а остающаяся в теле – пластической (остаточной).
    Работоспособность отдельной группы деталей машин зависит не только от механических свойств, но и от сопротивления воздействию химически активной рабочей среды, если такое воздействие становится значительным, то определяющим становятся физико-химические свойства материала – жаростойкость и коррозионная стойкость.
    Жаростойкость характеризует способность материала противостоять химической коррозии в атмосфере сухих газов при высокой температуре. У металлов нагрев сопровождается образованием на поверхности оксидного слоя (окалины).
    Коррозионная стойкость – это способность металла противостоять электрохимический коррозии, которая развивается при наличие жидкой среды на поверхности металла и ее электрохимической неоднородности.
    Для некоторых деталей машин, важные значение имеют физические свойства, характеризующие поведение материалов в магнитных, электрических и тепловых полях, а также под воздействием потоков высокой энергии или радиации. Их принято подразделять на магнитные, электрические, теплофизические и радиационные.
    Способность материала подвергаться различным методам горячей и холодной обработки определяют по технологическим свойствам . К ним относят литейные свойства, деформируемость, свариваемость и обрабатываемость режущим инструментом. Технологические свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.
    К последней группе основных свойств относится стоимость материала, которая оценивает экономичность его использования. Ее количественным показателем является – оптовая цена – стоимость единицы массы материалы в виде слитков, профилей, порошка, штучных и сварных заготовок, по которым завод-изготовитель реализует свою продукцию машиностроительным и приборостроительным предприятиям.

    Механические свойства, определяемые при статических нагрузках

    Механические свойства характеризуют сопротивление материала деформации, разрушению или особенность его поведения в процессе разрушения. Эта группа свойств включает показатели прочности, жесткости (упругости), пластичности, твердости и вязкости. Основную группу таких показателей составляют стандартные характеристики механических свойств, которые определяют в лабораторных условиях на образцах стандартных размеров. Полученные при таких испытаниях показатели механических свойств оценивают поведение материалов под внешней нагрузкой без учета конструкции детали и условий эксплуатации.
    По способу приложения нагрузок различают статические испытания на растяжение, сжатие, изгиб, кручение, сдвиг или срез. Наиболее распространены испытания на растяжения (ГОСТ 1497-84), которые дают возможность определить несколько важных показателей механических свойств.

    Испытание на растяжение . При растяжении стандартных образцов с площадью поперечного сечения Fo и рабочей (расчетной) длиной lo строят диаграмму растяжения в координатах: нагрузка – удлинение образца (рис.1). На диаграмме выделяют три участка: упругой деформации до нагрузки Рупр .; равномерной пластической деформации от Рупр. до Рmax и сосредоточенной пластической деформации от Рmax до Рк . Прямолинейной участок сохраняется до нагрузки, соответствующей пределу пропорциональности Рпц. Тангенс угла наклона прямолинейного участка характеризует модуль упругости первого рода Е.

    Рис. 1. Диаграмма растяжения пластичного металла (а) и диаграммы
    условных напряжений пластичного (б) и хрупкого (в) металлов.
    Диаграмма истинных напряжений (штриховая линия) дана для сравнения.

    Пластическая деформация выше Р упр. идет при возрастающей нагрузке, так как металл в процессе деформирования упрочняется. Упрочнение материала при деформации называется наклепом.

    Наклеп металла увеличивается до момента разрыва образца, хотя растягивающая нагрузка при этом уменьшается от Р max до Р к (рис.1, а). Это объясняется появлением в образце местного утонения-шейки, в котором в основном сосредотачивается пластическая деформация. Несмотря на уменьшение нагрузки, растягивающие напряжения в шейке повышается до тех пор, пока образец не разрушится.
    При растяжении образец удлиняется, а его поперечное сечение непрерывно уменьшается. Истинное напряжение определяются делением действующей в определенный момент нагрузки на площадь, которую образец имеет в этот момент (рис.1,б). Эти напряжения в повседневной практике не определяют, а пользуются условиями напряжениями, считая, что поперечное сечение F o образца остается неизменным.

    Напряжения σ упр., σ т, σ в - стандартные характеристики прочности. Каждая получается делением соответствующей нагрузки Р упр. Р т и Р max на начальную площадь поперечного сечения F о .

    Пределом упругости σ упр. называют напряжение, при котором пластическая деформация достигает значений 0,005; 0,02 и 0,05%. Соответствующие пределы упругости обозначают σ 0,005, σ 0,02, σ 0,05 .

    Условный предел текучести – это напряжение, которому соответствует пластическая деформация равная 0,2%; его обозначают σ 0,2 . Физический предел текучести σ т определяют по диаграмме растяжения, когда на ней имеется площадка текучести. Однако, при испытаниях на растяжение у большинства сплавов нет площадки текучести на диаграммах. Выбранная пластическая деформация 0,2% достаточно точно характеризует переход от упругих деформаций к пластическим.

    Временное сопротивление характеризует максимальную несущую способность материала, его прочность, предшествующую разрушению:

    σ в = Р max / F o

    Пластичность характеризуется относительным удлинением δ и относительным сужением ψ:

    где lk -конечная длина образца; lо и Fo – начальная длина и площадь поперечного сечения образца; Fк – площадь поперечного сечения в месте разрыва.
    Для малопластичных материалов испытания на растяжение (рис. 1,в) вызывают значительные затруднения. Такие материалы, как правило, подвергают испытаниям на изгиб.

    Испытание на изгиб . При испытании на изгиб в образце возникают как растягивающие, так и сжимающие напряжения. На изгиб испытывают чугуны, инструментальные стали, стали после поверхностного упрочнения и керамику. Определяемыми характеристиками служат предел прочности и стрела прогиба.

    Предел прочности при изгибе вычисляют по формуле:

    σ и = M / W,

    где М – наибольший изгибающий момент; W – момент сопротивления сечения, для образа круглого сечения

    W = πd 3 / 32

    (где d – диаметр образца), а для образцов прямоугольного сечения W = bh 2 /6 , где b, h – ширина и высота образца).
    Испытания на твердость . Под твердостью понимается способность материала сопротивляться внедрению в его поверхность твердого тела – индентора. В качестве индентора используют закаленный стальной шарик или алмазный наконечник в виде конуса или пирамиды. При вдавливании поверхностные слои материала испытывают значительную пластическую деформацию. После снятия нагрузки на поверхности остается отпечаток. Особенность происходящей пластической деформации состоит в том, что вблизи наконечника возникает сложное напряженное состояние, близкое к всестороннему неравномерному сжатию. По этой причине пластическую деформацию испытывают не только пластические, но и хрупкие материалы.
    Таким образом, твердость характеризует сопротивление материала пластической деформации. Такое же сопротивление оценивает и временное сопротивление, при определении которого возникает сосредоточенная деформация в области шейки. Поэтому для целого ряда материалов численные значения твердости и временного сопротивления пропорциональны. На практике широко применяют четыре метода измерения твердости: твердость по Бринеллю, твердость по Виккерсу, твердость по Роквеллу и микротвердость.
    При определении твердости по Бринеллю (ГОСТ 9012-59) в поверхность образца вдавливают закаленный шарик диаметром 10; 5 или 2,5 мм при действии нагрузки от 5000Н до 30000Н. После снятия нагрузки на поверхности образуется отпечаток в виде сферической лунки диаметром d.
    При измерении твердости по Бринеллю используют заранее составленные таблицы, указывающие число твердости НВ В зависимости от диаметра отпечатка и выбранной нагрузки, чем меньше диаметр отпечатка, тем выше твердость.
    Способ измерения по Бринеллю используют для сталей с твердостью < 450 НВ, цветных металлов с твердостью < 200 НВ. Для них установлена корреляционная связь между временным сопротивлением (в МПа) и числом твердости НВ:
    σ в » 3,4 НВ – для горячекатаных углеродистых сталей;
    σ в » 4,5 НВ – для медных сплавов;
    σ в » 3,5 НВ – для алюминиевых сплавов.
    При стандартном методе измерения по Виккерсу (ГОСТ 2999-75) в поверхность образца вдавливают четырехгранную алмазную пирамиду с углом при вершине 139°. Отпечаток получается в виде квадрата, диагональ которого измеряют после снятия нагрузки. Число твердости НV определяют с помощью специальных таблиц по значению диагонали отпечатка при выбранной нагрузке.

    Метод Виккерса применяют главным образом для материалов, имеющих высокую твердость, а также для испытания на твердость деталей малых сечений или тонких поверхностных слоев. Как правило, используют небольшие нагрузки: 10,30,50,100,200,500 Н. Чем тоньше сечение детали или исследуемый слой, тем меньше выбирают нагрузку.
    Число твердости по Виккерсу и по Бринеллю для материалов, имеющих твердость до 450 НВ, практически совпадают.
    Измерение твердости по Роквеллу (ГОСТ 9013-59) наиболее универсален и наименее трудоемок. Число твердости зависит от глубины вдавливания наконечника, в качестве которого используют алмазный конус с углом при вершине 120 0 или стальной шарик диаметром 1,588 мм. Для различных комбинаций нагрузок и наконечников прибор Роквелла имеет три измерительных шкалы: А.В.С. Твердость по Роквеллу обозначают цифрами, определяющими уровень твердости, и буквами HR с указанием шкалы твердости, например: 70HRA, 58HRC, 50HRB. Числа твердости по Роквеллу не имеют точных соотношений с числами твердости по Бринеллю и Виккерсу.
    Шкала А (наконечник – алмазный конус, общая нагрузка 600Н). Эту шкалу применяют для особо твердых материалов, для тонких листовых материалов или тонких (0,6-1,0 мм) слоев. Пределы измерения твердости по этой шкале 70-85.
    Шкала В (наконечник – стальной шарик, общая нагрузка 1000Н). При этой шкале определяют твердость сравнительно мягких материалов (<400НВ). Пределы измерения твердости 25-100.

    Шкала С (наконечник – алмазный конус, общая нагрузка 1500Н). Эту шкалу используют для твердых материалов (> 450НВ), например закаленных сталей. Пределы измерения твердости по этой шкале 20-67. Определение микротвердости (ГОСТ 9450-76) осуществляют вдавливанием в поверхность образца алмазной пирамиды при небольших нагрузках (0,05-5Н) с последующим измерением диагонали отпечатка. Этим методом оценивают твердость отдельных зерен, структурных составляющих, тонких слоев или тонких деталей.

    Механические свойства, определяемые при динамических нагрузках

    При работе деталей машин возможны динамические нагрузки, при которых многие металлы проявляют склонность к хрупкому разрушению. Опасность разрушения усиливают надрезы – концентраторы напряжения. Для оценки склонности металла к хрупкому разрушению под влиянием этих факторов проводят динамические испытания на ударный изгиб на маятниковых копрах (рис. 2). Стандартный образец устанавливают на две споры и посредине наносят удар, приводящий к разрушению образца. По шкале маятникова копра определяют работу К , затраченную на разрушение, и рассчитывают основную характеристику, получаемую в результате этих испытаний – ударную вязкость:

    КС = К / S 0 1 , [МДж/м 2 ],

    где S 0 1 , площадь поперечного сечения образца в месте надреза.


    Рис. 2. Схема маятникова копра (а) и испытание на удар (б):
    1 – образец; 2 – маятник; 3 – шкала; 4 – стрелка шкалы; 5- тормоз.

    В соответствии с ГОСТ 9454-78 предусмотрены испытания образцов трех видов: U-образным (радиус надреза r=1 мм); V-образным (r=0,25 мм) и Т-образным (трещина усталости, созданная в основании надреза. Соответственно ударную вязкость обозначает: КСU, KCV, KCT. Ударная вязкость из всех характеристик механических свойств наиболее чувствительна к снижению температуры. Поэтому испытания на ударную вязкость при пониженных температурах используют для определения порога хладноломкости – температуры или интервала температур, в котором происходит снижение ударной вязкости. Хладноломкость - способность металлического материала терять вязкость, хрупко разрушаться при понижении температуры. Хладноломкость проявляется у железа, стали, металлов и сплавов, имеющих объемно-центрированную кубическую (ОЦК) или гексагональную плотноупакованную (ГП) решетку. Она отсутствует у металлов с гранецентрированной кубической (ГЦК) решеткой.

    Механические свойства, определяемые при переменных циклических нагрузках

    Многие детали машин (валы, шатуны, зубчатые колеса) испытывают во время работы повторяющиеся циклические нагружения. Процессы постепенного накопления повреждений в материале под действием циклических нагрузок, приводящие к изменению его свойств, образованию трещин, их развитию и разрушению, называют усталостью, а свойство противостоять усталости – выносливостью (ГОСТ 23207-78). О способности материалы работать в условиях циклического нагружения судят по результатам испытаний образцов на усталость (ГОСТ 25.502-79). Их проводят на специальных машинах, создающих в образцах многократное нагружение (растяжение – сжатие, изгиб, кручение). Образцы испытывают последовательно на разных уровнях напряжений, определяя число циклов до разрушения. Результаты испытаний изображают в виде кривой усталости, которая строится в координатах: максимальное напряжение цикла σ max / или σ в ) – число циклов. Кривые усталости позволяют определять следующие критерии выносливости:

    - циклическую прочность , которая характеризует несущую способность материала, т.е. то наибольшее напряжение, которое он способен выдержать за определенное время работы.- циклическую долговечность – число циклов (или эксплуатационных часов), которые выдерживает материал до образования усталостной трещины определенной протяженности или до усталостного разрушения при заданном напряжении.

    Кроме определения рассмотренных критериев многоцикловой выносливости, для некоторых специальных случаев применяют испытания на малоцикловую усталость . Их проводят при высоких напряжениях (выше σ 0,2 ) и малой частоте нагружения (обычно не более 6 ГЦ). Эти испытания имитируют условия работы конструкций (например, самолетных), которые воспринимают редкие, но значительные циклические нагрузки.

    Чтобы оценить эксплуатационные свойства изделий и определить физические и механические характеристики материалов, используются различные инструкции, ГОСТы и другие регламентирующие и рекомендательные документы. Рекомендуются и методы испытаний на разрушение целой серии изделий или однотипных образцов материала. Это не слишком экономичный метод, но эффективный.

    Определение характеристик

    Основные характеристики механических свойств материалов следующие.

    1. Временное сопротивление или предел прочности - та сила напряжения, которая зафиксирована при наибольшей нагрузке перед разрушением образца. Механические характеристики прочности и пластичности материалов описывают свойства твёрдых тел сопротивляться необратимым изменениям формы и разрушению под влиянием внешних нагрузок.

    2. Условным называется напряжение, когда остаточная деформация достигнет 0,2% длины образца. Это наименьшее напряжение в то время, как образец продолжает деформироваться без заметного увеличения нагрузок.

    3. Пределом длительной прочности называют наибольшее напряжение, при данной температуре вызывающее в течение определённого времени разрушение образца. Определение механических характеристик материалов ориентируется на предельные единицы длительной прочности - разрушение происходит при 7 000 градусах по Цельсию за 100 часов.

    4. Условным пределом ползучести называется напряжение, вызывающее при данной температуре за определённое время в образце заданное удлинение, а также скорость ползучести. Пределом считается деформация металла за 100 часов при 7 000 градусах по Цельсию на 0,2%. Ползучестью называется определённая скорость деформации металлов при постоянном нагружении и высокой температуре в течение длительного времени. Жаропрочность - это сопротивление материала разрушению и ползучести.

    5. Пределом выносливости называют наибольшее значение напряжения цикла, когда усталостного разрушения не происходит. Число циклов нагружения может быть заданное или произвольное, в зависимости от того, как запланированы механические испытания материалов. Механические характеристики включают в себя усталость и выносливость материала. Под действием нагрузок в цикле накапливаются повреждения, образуются трещины, приводящие к разрушению. Это усталость. А свойство сопротивления усталости - выносливость.

    Растяжение и сжатие

    Материалы, которые применяются в инженерной практике, разделяются на две группы. Первая - пластичные, для разрушения которых должны появиться значительные остаточные деформации, вторая - хрупкие, разрушающиеся при очень малых деформациях. Естественно, такое деление весьма условно, потому что каждый материал в зависимости от создаваемых условий может повести себя и как хрупкий, и как пластичный. Это зависит от характера состояния напряжения, от температуры, от скорости деформирования и других факторов.

    Механические характеристики материалов при растяжении и сжатии красноречивы и у пластичных, и у хрупких. Например, малоуглеродистую сталь испытывают растяжением, а чугун - сжатием. Чугун - хрупкий, сталь - пластична. Хрупкие материалы имеют большую сопротивляемость при сжатии, при деформации растяжения - хуже. Пластичные имеют примерно одинаковые механические характеристики материалов при сжатии и растяжении. Однако определяется их порог всё-таки растяжением. Именно этими способами можно более точно узнать механические характеристики материалов. Диаграмма растяжения и сжатия представлена в иллюстрациях к данной статье.

    Хрупкость и пластичность

    Что же такое пластичность и хрупкость? Первое - это способность не разрушаться, получая остаточные деформации в больших количествах. Такое свойство является решающим для важнейших технологических операций. Изгиб, волочение, вытяжка, штамповка и многие другие операции зависят от характеристик пластичности. К пластичным материалам относятся отожжённая медь, латунь, алюминий, малоуглеродистая сталь, золото и тому подобные. Гораздо менее пластичны бронза и дюраль. Совсем слабо пластичны почти все легированные стали.

    Характеристики прочности пластичных материалов сопоставляют с пределом текучести, о котором будет сказано ниже. На свойства хрупкости и пластичности большое влияние оказывают температура и скорость нагружения. Быстрое натяжение придаёт материалу хрупкость, а медленное - пластичность. Например, стекло - материал хрупкий, но оно выдерживает длительное воздействие нагрузки, если температура нормальная, то есть показывает свойства пластичности. А пластична, однако при ударной резкой нагрузке проявляется как материал хрупкий.

    Метод колебаний

    Физико-механические характеристики материалов определяются возбуждением продольных, изгибных, крутильных и других, ещё более сложных а зависимости от размеров образцов, форм, типов приёмника и возбудителя, способов крепления и схем приложения динамических нагрузок. Крупногабаритные изделия тоже подлежат испытаниям с помощью данного метода, если существенно изменить методику применения в способах приложения нагрузки, возбуждения колебаний и регистрации их. Этим же методом определяются механические характеристики материалов, когда нужно оценить жёсткость крупногабаритных конструкций. Однако при локальном определении в изделии характеристик материала этот способ не используется. Практическое применение методики возможно только тогда, когда известны геометрические размеры и плотность, когда возможно закрепление изделия на опорах, а на самом изделии - преобразователей, нужны определённые температурные условия и т.д.

    Например, при смене температурных режимов происходит то или иное изменение, механические характеристики материалов при нагревании становятся другими. Практически все тела в этих условиях расширяются, что влияет на их структуру. Любое тело имеет те или иные механические характеристики материалов, из которых оно состоит. Если по всем направлениям эти характеристики не изменяются и остаются одинаковыми, такое тело называют изотропным. Если же физико-механические характеристики материалов изменяются - анизотропным. Последнее является характерной чертой практически всех материалов, просто в разной степени. Но есть, например, стали, где анизотропность весьма незначительна. Наиболее ярко она выражена в таких естественных материалах, как дерево. В производственных условиях определяют механические характеристики материалов посредством контроля качества, где используются различные ГОСТЫ. Оценка неоднородности получается из статистической обработки, когда суммируются результаты испытаний. Образцы должны быть многочисленными и вырезанными из конкретной конструкции. Такой способ получения технологических характеристик считается довольно трудоёмким.

    Акустический метод

    Акустических методов для того, чтобы определить механические свойства материалов и их характеристики, достаточно много, и все они отличаются способами ввода, приёма и регистрации колебаний в синусоидальном и импульсном режимах. Используются акустические методы при исследовании, например, строительных материалов, их толщины и напряжённости состояния, при дефектоскопии. Механические характеристики конструкционных материалов также определяются с помощью акустических методов. Сейчас уже разрабатываются и серийно выпускаются многочисленные разнообразные электронные акустические приборы, которые позволяют регистрировать упругие волны, параметры их распространения как в синусоидальном, так и в импульсном режиме. На их основе определяются механические характеристики прочности материалов. Если используются упругие колебания малой интенсивности, этот метод становится абсолютно безопасным.

    Недостатком акустического метода является необходимость акустического контакта, который далеко не всегда возможен. Поэтому работы эти не слишком производительны, если нужно срочно получить механические характеристики прочности материалов. Огромное влияние на результат оказывает состояние поверхности, геометрические формы и размеры исследуемого изделия, а также среда, где проводятся испытания. Чтобы преодолеть эти сложности, конкретную задачу нужно решать строго определённым акустическим методом или, напротив, использовать их сразу несколько, это зависит от конкретной ситуации. Например, стеклопластики хорошо поддаются такому исследованию, поскольку хорошая скорость распространения упругих волн, а потому широко используется сквозное прозвучивание, когда приёмник и излучатель располагаются на противоположных поверхностях образца.

    Дефектоскопия

    Методы дефектоскопии применяются для контроля за качеством материалов в различных областях промышленности. Бывают неразрушающие и разрушающие методы. К неразрушающим относятся следующие.

    1. Для определения трещин на поверхностях и непроваров применяется магнитная дефектоскопия . Участки, которые имеют такие дефекты, характеризуются полями рассеивания. Обнаружить их можно специальными приборами или же просто наложить слой магнитного порошка на всю поверхность. На местах дефектов расположение порошка будет меняться уже при наложении.

    2. Дефектоскопия проводится и с помощью ультразвука . Направленный луч будет по-разному отражаться (рассеиваться), если даже глубоко внутри образца имеются какие-нибудь несплошности.

    3. Дефекты в материале хорошо показывает радиационный метод исследования , основанный на разнице в поглощении излучения средой различной плотности. Используется гамма-дефектоскопия и рентген.

    4. Химическая дефектоскопия. Если поверхность протравить слабым раствором азотной, соляной кислоты или их смесью (царская водка), то в местах, где есть дефекты, проявляется сеточка в виде чёрных полосок. Можно применить метод, при котором снимаются серные отпечатки. В местах, где материал неоднороден, сера должна менять цвет.

    Разрушающие методы

    Разрушающие методы здесь уже частично разобраны. Образцы испытывают на изгиб, сжатие, растяжение, то есть применяются статические разрушающие методы. Если же изделие испытывают переменными циклическими нагрузками на ударный изгиб - определяются динамические свойства. Макроскопические методы рисуют общую картину строения материала и в больших объёмах. Для такого исследования нужны специально шлифованные образцы, которые подвергаются травлению. Так, можно выявить форму и расположение зёрен, например, в стали, наличие кристаллов с деформацией, волокона, раковины, пузыри, трещины и прочие неоднородности сплава.

    Микроскопическими методами изучается микроструктура и выявляются мельчайшие пороки. Образцы таким же образом предварительно шлифуют, полируют и потом подвергают травлению. Дальнейшее испытание предполагает использование электрических и оптических микроскопов и рентгеноструктурного анализа. Основой этого метода служит интерференция лучей, которые рассеиваются атомами вещества. Контролируется характеристика материала с помощью анализа рентгенограммы. Механические характеристики материалов определяют их прочность, что является главным для построения конструкций надёжных и безопасных в эксплуатации. Поэтому материал проверяется тщательно и разными методами во всех состояниях, какие он способен принять, не потеряв высокий уровень механических характеристик.

    Методы контроля

    Для проведения неразрушающего контроля за характеристиками материалов большое значение имеет правильный выбор эффективных методов. Наиболее точны и интересны в этом плане методы дефектоскопии - контроль дефектов. Здесь необходимо знать и понимать различия между способами реализации методов дефектоскопии и методов определения физико-механических характеристик, поскольку они принципиально отличаются друг от друга. Если последние основываются на контроле физических параметров и последующей их корреляции с механическими характеристиками материала, то дефектоскопия зиждется на прямом преобразовании излучения, которое отражается от дефекта или проходит контролируемую среду.

    Лучше всего, конечно, контроль комплексный. Комплексность заключается в определении оптимальных физических параметров, по которым можно выявить прочностные и прочие физико-механические характеристики образца. А также одновременно разрабатывается и затем осуществляется оптимальный комплекс средств контроля над дефектами структуры. И, наконец, появляется интегральная оценка данного материала: определяется его работоспособность по целому комплексу параметров, которые помогли определить неразрушающие методы.

    Механические испытания

    С помощью таких испытаний проверяются и оцениваются механические свойства материалов. Этот вид контроля появился очень давно, но до сих пор не потерял своей актуальности. Даже современные высокотехнологичные материалы потребители достаточно часто и ожесточённо критикуют. А это говорит о том, что экспертизы должны проводиться тщательнее. Как уже было сказано, механические испытания можно подразделить на два вида: статические и динамические. Первые проверяют изделие или образец на кручение, растяжение, сжатие, изгиб, а вторые - на твёрдость и на ударную вязкость. Современное оборудование помогает выполнять эти не слишком простые процедуры качественно и выявлять все эксплуатацонные свойства данного материала.

    Испытанием на растяжение можно выявить сопротивляемость материала к воздействию приложенного постоянного или возрастающего растягивающего напряжения. Метод старый, испытанный и понятный, используемый очень давно и до сих пор широко. Образец растягивается вдоль по продольной оси посредством приспособления в испытательной машине. Скорость растяжения образца постоянная, нагрузка измеряется специальным датчиком. Одновременно контролируется удлинение, а также соответствие его прилагаемой нагрузке. Результаты таких испытаний чрезвычайно полезны, если нужно содавать новые конструкции, поскольку пока никто не знает, как они себя поведут под нагрузкой. Подсказать может только выявление всех параметров упругости материала. Максимальное напряжение - предел текучести выносит определение максимальной нагрузки, которую данный материал может выдержать. Это поможет вычислить запас прочности.

    Испытание твёрдости

    Жёсткость материала рассчитывается по Сочетание текучести и твёрдости помогает определить упругость материала. Если в технологическом процессе присутствуют такие операции, как протяжка, прокатка, прессование, то величину возможной пластической деформации знать просто необходимо. При высокой пластичности материал сможет принять любую форму при соответствующей нагрузке. Методом выявления запаса прочности может служить также и испытание на сжатие. Особенно если материал является хрупким.

    Твёрдость испытывают с помощью идентора, который выполнен из гораздо более твёрдого материала. Чаще всего проводится по методу Бринеля (вдавливается шарик), Виккерса (идентер в форме пирамидки) или Роквелла (используется конус). В поверхность материала вдавливается идентор с определённой силой в определённый период времени, а потом изучается оставшийся на образце отпечаток. Есть и другие достаточно широко применяемые испытания: на ударную прочность, например, когда оценивается сопротивление материала в момент приложения нагрузки.

    Механические свойства характеризуют способность материалов сопротивляться действию внешних сил. К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.

    Прочность - это способность материала сопротивляться разрушающему воздействию внешних сил.

    Твердость - это способность материала сопротивляться внедрению в него другого, более твердого тела под действием нагрузки.

    Вязкостью называется свойство материала сопротивляться разрушению под действием динамических нагрузок.

    Упругость - это свойство материалов восстанавливать свои размеры и форму после прекращения действия нагрузки.

    Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.

    Хрупкость - это свойство материалов разрушаться под действием внешних сил без остаточных деформаций.

    Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.

    Широкое распространение объясняется тем, что не требуются специальные образцы.

    Это неразрушающий метод контроля. Основной метод оценки качества термической обработке изделия. О твердости судят либо по глубине проникновения индентора (метод Роквелла), либо по величине отпечатка от вдавливания (методы Бринелля, Виккерса, микротвердости).

    Во всех случаях происходит пластическая деформация материала. Чем больше сопротивление материала пластической деформации, тем выше твердость.

    Наибольшее распространение получили методы Бринелля, Роквелла, Виккерса и микротвердости. Схемы испытаний представлены на рис. 3.1.

    Рис. 3.1. Схемы определения твердости: а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

    Твердость по Бринеллю (ГОСТ 9012)

    Испытание проводят на твердомере Бринелля (рис.3.1 а)

    В качестве индентора используется стальной закаленный шарик диаметром D 2,5; 5; 10 мм, в зависимости от толщины изделия.

    Нагрузка Р, в зависимости от диаметра шарика и измеряемой твердости: для термически обработанной стали и чугуна – , литой бронзы и латуни – , алюминия и других очень мягких металлов – .

    Продолжительность выдержки : для стали и чугуна – 10с, для латуни и бронзы – 30с.

    Полученный отпечаток измеряется в двух направлениях при помощи лупы Бринелля.

    Твердость определяется как отношение приложенной нагрузки Р к сферической поверхности отпечатка F:

    Стандартными условиями являются D = 10 мм; Р = 3000 кгс; = 10 с. В этом случае твердость по Бринеллю обозначается НВ 250, в других случаях указываются условия: НВ D / P / , НВ 5/ 250 /30 – 80.

    Метод Роквелла (ГОСТ 9013)

    Основан на вдавливании в поверхность наконечника под определенной нагрузкой (рис. 3.1 б)

    Индентор для мягких материалов (до НВ 230) – стальной шарик диаметром 1/16” ( 1,6 мм), для более твердых материалов – конус алмазный.

    Нагружение осуществляется в два этапа. Сначала прикладывается предварительная нагрузка (10 ктс) для плотного соприкосновения наконечника с образцом. Затем прикладывается основная нагрузка Р 1 , в течение некоторого времени действует общая рабочая нагрузка Р. После снятия основной нагрузки определяют значение твердости по глубине остаточного вдавливания наконечника h под нагрузкой .

    В зависимости от природы материала используют три шкалы твердости.

    Шкалы для определения твердости по Роквеллу


    Метод Виккерса

    Твердость определяется по величине отпечатка (рис.3.1 в).

    В качестве индентора используется алмазная четырехгранная пирамида с углом при вершине 136 o .

    Твердость рассчитывается как отношение приложенной нагрузки P к площади поверхности отпечатка F:

    Нагрузка Р составляет 5…100 кгс. Диагональ отпечатка d измеряется при помощи микроскопа, установленного на приборе.

    Преимущество данного способа в том, что можно измерять твердость любых материалов, тонкие изделия, поверхностные слои. Высокая точность и чувствительность метода.

    Способ микротвердости – для определения твердости отдельных структурных составляющих и фаз сплава, очень тонких поверхностных слоев (сотые доли миллиметра).

    Аналогичен способу Виккерса. Индентор – пирамида меньших размеров, нагрузки при вдавливании Р составляют 5…500 гс

    Метод царапания.

    Алмазным конусом, пирамидой или шариком наносится царапина, которая является мерой. При нанесении царапин на другие материалы и сравнении их с мерой судят о твердости материала.

    Можно нанести царапину шириной 10 мм под действием определенной нагрузки. Наблюдают за величиной нагрузки, которая дает эту ширину.

    Динамический метод (по Шору)

    Шарик бросают на поверхность с заданной высоты, он отскакивает на определенную величину. Чем больше величина отскока, тем тверже материал.

    В результате проведения динамических испытаний на ударный изгиб специальных образцов с надрезом (ГОСТ 9454) оценивается вязкость материалов и устанавливается их склонность к переходу из вязкого состояния в хрупкое.

    Вязкость – способность материала поглощать механическую энергию внешних сил за счет пластической деформации.

    Является энергетической характеристикой материала, выражается в единицах работы Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами.

    Также вязкость зависит от условий, в которых работает металл (температуры, скорости нагружения, наличия концентраторов напряжения).

    Ударная вязкость определяется работой А, затраченной на разрушение образца, отнесенной к площади его поперечного сечения F; Дж/м 2:

    Испытания проводятся ударом специального маятникового копра. Для испытания применяется стандартный надрезанный образец, устанавливаемый на опорах копра. Маятник определенной массы наносит удар по стороне противоположной надрезу.

    Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства характеризуются способностью металлов и сплавов в расплавленном состоянии хорошо заполнять полость литейной формы и точно воспроизводить ее очертания (жидкотекучестью), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии.

    Ковкость - это способность металлов и сплавов подвергаться различным видам обработки давлением без разрушения.

    Свариваемость определяется способностью материалов образовывать прочные сварные соединения.

    Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.

    Похожие публикации