Мультимедийная презентация переменный ток. Презентация на тему: Переменный электрический ток Переменный ток и его получение презентация

Переменный электрический ток. Генератор переменного электрического тока.


Определение

  • Переменным током называется электрический ток, который периодически изменяется по величине и по направлению.
  • Условное обозначение или.
  • Модуль максимального значения силы тока за период называется амплитудой колебаний силы тока.
  • В настоящее время в электрических сетях используется переменный ток. Многие законы, которые были выведены для постоянного тока, действуют и для переменного тока.

Переменный ток имеет ряд преимуществ по сравнению с

постоянным током:

  • - генератор переменного тока значительно проще и дешевле генератора постоянного тока;
  • - переменный ток можно трансформировать;
  • - переменный ток легко преобразуется в постоянный;
  • - двигатели переменного тока значительно проще и дешевле двигателей постоянного тока;
  • - проблема передачи электроэнергии на большие расстояния была решена только при использовании переменного тока высокого напряжения и трансформаторов.

Для производства

переменного тока применяется

синусоидальное напряжение.


Частота переменного тока – это число колебаний в 1 с

Стандартная частота промышленного переменного тока равна 50 Гц.



Является

электромеханическим устройством, которое преобразует механическую энергию в электрическую энергию переменного тока.

Системы производящие переменный ток были известны в простых видах со времён открытия магнитной индукции электрического тока.

Принцип действия генератора основан на явлении электромагнитной индукции - возникновении электрического напряжения в обмотке статора, находящейся в переменном магнитном поле. Оно создается с помощью вращающегося электромагнита - ротора при прохождении по его обмотке постоянного тока.



Общий вид генератора переменного тока с внутренними полюсами; Ротор является индуктором, а статор - якорем.


Схема устройства генератора: 1 - неподвижный якорь; 2 - вращающийся индуктор; 3- контактные кольца; 4- скользящие по ним щетки.


Вращающийся индуктор

генератора 1 (ротор) и якорь

(статор) 2, в обмотке которого

индуцируется ток.


Виды генераторов:

Турбогенератор

- это генератор, который приводится в действие паровой или газовой турбиной.


Виды генераторов:

Дизель-агрегат- генератор, ротор которого вращается от двигателя внутреннего сгорания.


Гидрогенератор вращает гидротурбина.



















Включить эффекты

1 из 18

Отключить эффекты

Смотреть похожие

Код для вставки

ВКонтакте

Одноклассники

Телеграм

Рецензии

Добавить свою рецензию


Слайд 1

Слайд 2

Сегодня на уроке: Переменный электрический ток. Резистор в цепи переменного тока. Действующие значения напряжения и силы тока. Мощность в цепи переменного тока.

Слайд 3

Как наша прожила б планета, Как люди жили бы на ней Без теплоты, магнита, света И электрических лучей? Адам Мицкевич

Слайд 4

Картофелечистка Протирочная машина Электромясорубка Тестомесильная машина Хлеборезка

Слайд 5

Электрический ток величина и направление которого меняются с течением времени называется переменным. Переменный электрический ток представляет собой вынужденные электромагнитные колебания.

Слайд 6

Слайд 7

Переменный ток может возникать при наличии в цепи переменной ЭДС. Получение переменной ЭДС в цепи основано на явлении электромагнитной индукции. Для этого токопроводящую рамку равномерно с угловой скоростью ω вращают в однородном магнитном поле. При этом значение угла α между нормалью к рамке и вектором магнитной индукции будет определяться выражением: Получение переменной эдс Следовательно, величина магнитного потока, пронизывающего рамку, будет изменяться со временем по гармоническому закону:

Слайд 8

Согласно закону Фарадея, при изменении потока магнитной индукции, пронизывающего контур, в контуре возникает ЭДС индукции. Используя понятие производной, уточняем формулу для закона электромагнитной индукции При изменении магнитного потока, пронизывающего контур, ЭДС индукции также изменяется со временем по закону синуса (или косинуса). максимальное значение или амплитуда ЭДС. Если рамка содержит N витков, то амплитуда возрастает в Nраз. Подключив источник переменной ЭДС к концам проводника, мы создадим на них переменное напряжение:

Слайд 9

Общие соотношения между напряжением и силой тока Как и в случае постоянного тока, сила переменного тока определяется напряжением на концах проводника. Можно считать, что в данный момент времени сила тока во всех сечениях проводника имеет одно и то же значение. Но фаза колебаний силы тока может не совпадать с фазой колебаний напряжения. В таких случаях принято говорить, что существует сдвиг фаз между колебаниями тока и напряжения. В общем случае мгновенное значение напряжения и силы тока можно определить: или φ – сдвиг фаз между колебаниями тока и напряжения Im – амплитуда тока, А.

Слайд 10

Резистор в цепи переменного тока Рассмотрим цепь, содержащую нагрузку электрическое сопротивление которой велико. Это сопротивление мы теперь будем называть активным, так как при наличии такого сопротивления электрическая цепь поглощает поступающую к ней от источника тока энергию, которая превращается во внутреннюю энергию проводника. В такой цепи: Электрические устройства, преобразующие электрическую энергию во внутреннюю, называются активными сопротивлениями

Слайд 11

Поскольку мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения, то его можно рассчитать по закону Ома для участка цепи: В цепи с активным сопротивлением сдвиг фаз между колебаниями силы тока и напряжения равен нулю, т.е. колебания силы тока совпадают по фазе с колебаниями напряжения.

Слайд 12

Действующие значения напряжения и силы тока Когда говорят, что напряжение в городской электрической сети составляет 220 В, то речь идёт не о мгновенном значении напряжения и не его амплитудном значении, а о так называемом действующем значении. Когда на электроприборах указывают силу тока, на которую они рассчитаны, то также имеют в виду действующее значение силы тока. ФИЗИЧЕСКИЙ СМЫСЛ Действующее значение силы переменного тока равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время. Действующее значение напряжения:

Слайд 13

Мощность в цепи переменного тока Действующие значения напряжения и силы тока фиксируются электроизмерительными приборами и позволяют непосредственно вычислять мощность переменного тока в цепи. Мощность в цепи переменного тока определяется теми же соотношениями, что и мощность постоянного тока, в которые вместо силы постоянного тока и постоянного напряжения подставляют соответствующие действующие значения: Когда между напряжением и силой тока существует сдвиг фаз, мощность определяется по формуле:

Слайд 14

ВЫВОДЫ На этом уроке вы узнали, что: переменный электрический ток представляет собой вынужденные электромагнитные колебания, в которых сила тока в цепи изменяется со временем по гармоническому закону; получение переменной ЭДС в цепи основано на явлении электромагнитной индукции; на активном сопротивлении разность фаз колебаний силы тока и напряжения равна нулю; действующие значения переменного тока и напряжения равны значениям постоянного тока и напряжения, при которых в цепи с тем же активным сопротивлением выделялась бы та же энергия; мощность в цепи переменного тока определяется теми же соотношениями, что и мощность постоянного тока, в которые вместо силы постоянного тока и постоянного напряжения подставляют соответствующие действующие значения.

Слайд 15

Ответы теста

Слайд 16

РЕШЕНИЕ ЗАДАЧ Рамка, имеющая 100 витков, вращается с частотой 15 Гц в однородном магнитном поле индукцией 0,2 Тл. Чему равна площадь рамки, если ампли-тудное значение возникающей в ней ЭДС 45 В?

Слайд 17

ДАНО: N=100 шт ν=15 Гц В=0,2 Тл εm=45 В S - ? РЕШЕНИЕ: e = εm sinωt εm= BS ω ω = 2π/T= 2π ν εm= BS 2π ν(1 виток) εmn= BSN 2π ν S = εmn /(BN 2π ν) ВЫЧИСЛЕНИЕ: РАЗМЕРНОСТЬ: ОТВЕТ: S = 0,024 м2

Слайд 18

ДОМАШНЕЕ ЗАДАНИЕ Учебник: § 31, 32; Г.Я.Мякишев, Б.Б.Буховцев «ФИЗИКА – 11». Подготовить реферат на тему:

Посмотреть все слайды

Конспект

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

УРОКА ПО ФИЗИКЕ

Разработала преподаватель

физики С.Е.Рязина

Саранск

Цели урока:

Образовательная:

Развивающая:

Воспитательная:

Тип урока:

Методы проведения:

Оснащение урока:

Высказывание:

Как наша прожила б планета,

Как люди жили бы на ней

Без теплоты, магнита, света

И электрических лучей?

Адам Мицкевич

Межпредметные связи:

ПЛАН УРОКА

1.Организационный момент

6.Подведение итогов урока.

7.Задание на дом:

Подготовить рефераты на темы:

2. «Оборудование предприятий общественного питания в которых электрическая энергия превращается в другие виды энергии».

ХОД УРОКА

1.Организационный момент (объявление темы, задач и целей урока, психологическая подготовка учащихся к уроку).

Слайд 1

Слайд 2

Слайд 3

Он всем несет тепло и свет

Щедрей его на свете нет!

К поселкам, селам, городам

3.Объяснение нового материала.

Слайд 4

Слайд 5

Слайд 6

Слайд 7

Слайд 8

Историческая справка (сообщение учащегося)

Слайд 9

Слайд 10

Слайд 11

Слайд 12

Слайд 13

4.Закрепление и обобщение нового материала.

(Проверка качества, закрепление и обобщение изученного, выводы.)

Слайд 14

Слайд 15

Решение задачи

Слайд 16, 17

6.Подведение итогов урока.

(Выставление оценок и их комментарий.)

Слайд 18

стр. 102 упражнение 4 задача №5.

1. «Новые современные типы генераторов»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ МОРДОВИЯ

ГБОУ РМ СПО (ССУЗ) «Саранский техникум пищевой и перерабатывающей промышленности»

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

УРОКА ПО ФИЗИКЕ

НА ТЕМУ: «Переменный электрический ток»

Разработала преподаватель

физики С.Е.Рязина

Саранск

Тема урока: «Переменный электрический ток».

Цели урока:

Образовательная:

Сформировать у учащихся представление о переменном токе. Рассмотреть основные особенности активного сопротивления. Раскрыть основные понятия темы.

Развивающая:

Развивать у учащихся умение применять полученные знания о переменном токе в практическом применении в быту, технике и на производственной практике; развивать интерес к знаниям, способность анализировать, обобщать, выделять главное.

Воспитательная:

Привить уважение к науке как силе, преобразующей общество и человека на основе инновационных технологий. Воспитывать у учащихся чувство требовательности к себе, дисциплинированность. Расширить рамки окружающего мира учащихся.

Тип урока: усвоение новых знаний на основе изученного ранее материала.

Методы проведения: объяснение учителя с применением компьютера; информационно-иллюстративный, опрос учащихся, работа с опорными конспектами, тестами.

Оснащение урока: компьютер, мультимедийный проектор, опорные конспекты, презентация, тестовые задания, учебники.

Высказывание:

Как наша прожила б планета,

Как люди жили бы на ней

Без теплоты, магнита, света

И электрических лучей?

Адам Мицкевич

Межпредметные связи: математика – нахождение производной, тригонометрические функции; оборудование – механическое оборудование; история – промышленность IX века; внутрипредменая связь – законы постоянного тока, магнитное поле, электромагнитная индукция.

ПЛАН УРОКА

1.Организационный момент (объявление темы, задач и целей урока, психологическая подготовка учащихся к уроку).

2.Актуализация опорных знаний.

(Воспроизведение основных положений изученного на предыдущих уроках материала)

3.Объяснение нового материала.

4.Закрепление и обобщение нового материала.

(Проверка качества, закрепление и обобщение изученного, выводы.)

6.Подведение итогов урока.

(Выставление оценок и их комментарий.)

7.Задание на дом:

§ 31, 32; Г.Я.Мякишев, Б.Б.Буховцев «ФИЗИКА – 11», стр. 102 упражнение 4 задача №5.

Подготовить рефераты на темы:

1. «Новые современные типы генераторов».

2. «Оборудование предприятий общественного питания в которых электрическая энергия превращается в другие виды энергии».

ХОД УРОКА

1.Организационный момент (объявление темы, задач и целей урока, психологическая подготовка учащихся к уроку).

Этот урок посвящён вынужденным электромагнитным колебаниям и переменному электрическому току. Вы узнаете,

Каким образом можно получить переменную ЭДС и

Какие соотношения существуют между силой тока и напряжением в цепях переменного тока,

В чём разница между действующими и амплитудными значениями тока и напряжения.

Слайд 1

Слайд 2

Слайд 3

2.Актуализация опорных знаний

Он всем несет тепло и свет

Щедрей его на свете нет!

К поселкам, селам, городам

Приходит он по проводам! (электрический ток)

Воспроизведение основных положений изученного на предыдущих уроках материала:

1. Что называют электрическим током?

2. Какой ток называют постоянным?

3. Какая связь существует между переменными электрическим и магнитным полями?

4. В чём заключается явление электромагнитной индукции?

5. Какие электромагнитные колебания называются вынужденными?

6. Сформулируйте закон Ома для участка цепи.

3.Объяснение нового материала.

В электростатических машинах, гальванических элементах, аккумуляторах ЭДС с течением времени не меняла своего направления. В такой цепи ток шёл всё время, не меняя ни величины, ни направления и поэтому назывался постоянным.

Электрическая энергия обладает неоспоримым преимуществом перед всеми другими видами энергии. Её можно передавать по проводам на огромные расстояния со сравнительно малыми потерями и удобно распределять между потребителями. Главное же в том, что эту энергию с помощью достаточно простых устройств легко превратить в любые другие формы: механическую, внутреннюю, энергию света и т.д. Вы будущие технологи и на практике увидите множество различных устройств, в которых электрическая энергия превращается в другие виды энергии. Примерами такого оборудования являются: картофелечистка, электромясорубка, хлеборезка…

Слайд 4

Всё это оборудование и многое другое включается в цепь, в которой протекает переменный электрический ток.

Переменный ток генерируется на электростанциях. Происходит рождение переменной ЭДС, которая многократно и непрерывно меняет свою величину и направление. Это происходит в генераторах – это машины, в которых ЭДС возникает в результате явления электромагнитной индукции.

Переменный ток имеет преимущество перед постоянным:

напряжение и силу тока можно в очень широких пределах преобразовывать, трансформировать почти без потерь энергии.

Так что же представляет собой переменный электрический ток?

Слайд 5

Переменный электрический ток вырабатывается в генераторах переменного тока.

Рассмотрим принцип действия генератора:

Слайд 6

На этом слайде мы с вами увидели, что переменный ток может возникать при наличии в цепи переменной ЭДС.

Слайд 7

Слайд 8

На рисунке представлена простейшая схема генератора переменного тока.

Историческая справка (сообщение учащегося)

Более подробно устройство генераторы мы с вами изучим на следующих уроках.

Слайд 9

Слайд 10

Слайд 11

Слайд 12

Слайд 13

4.Закрепление и обобщение нового материала.

(Проверка качества, закрепление и обобщение изученного, выводы.)

Слайд 14

Итак, что же сегодня мы с вами выяснили на уроке:

- что представляет собой переменный электрический ток переменный электрический ток?

- на каком явлении основано получение переменной ЭДС в цепи?

- чему равна разность фаз колебаний силы тока и напряжения на активном сопротивлении?

Как соотносятся действующие значения переменного тока и напряжения со значениями постоянного тока и напряжения?

- как определяется мощность в цепи переменного тока?

Выполнение тестового задания с последующей самопроверкой)

Слайд 15

Решение задачи

Слайд 16, 17

6.Подведение итогов урока.

(Выставление оценок и их комментарий.)

Слайд 18

7.Задание на дом: § 31, 32; Г.Я.Мякишев, Б.Б.Буховцев «ФИЗИКА – 11».

стр. 102 упражнение 4 задача №5.

Подготовить рефераты на темы:

1. «Новые современные типы генераторов»

2. «Оборудование предприятий общественного питания в которых электрическая энергия превращается в другие виды энергии».

Скачать конспект

поэтому практически не используются. И наоборот, незатухающие вынужденные колебания имеют большое практическое значение. Вынужденные электрические колебания появляются при наличии в цепи периодической электродвижущей силы. Электрические лампы в наших квартирах и на улице, холодильник и пылесос, телевизор и магнитофон - все они работают, используя энергию электромагнитных колебаний. На применении электромагнитных колебаний ос­нована работа электромоторов, приводящих в действие станки на заводах и фабриках, движущих электровозы и т.п. Во всех этих примерах речь идет об использовании одного из видов электромагнитных колебаний - переменного электрического тока. Переменным называют ток, периодически изменяющийся по модулю и направлению. Переменный электрический ток в энергетических электрических цепях является результатом возбуждения в них вынужденных электромагнитных колебаний, которые создаются генератором переменного тока.

«Физика - 11 класс»

Как получить незатухающие вынужденные электромагнитные колебания?
Переменный ток в осветительной сети представляет собой не что иное, как вынужденные электромагнитные колебания.
Сила тока и напряжение меняются со временем по гармоническому закону.
Переменное напряжение на концах цепи создается генераторами на электростанциях.

Частота переменного тока - это число колебаний в 1 секунду.
Стандартная частота промышленного переменного тока равна 50 Гц, т.е. на протяжении 1 с ток 50 раз идет в одну сторону и 50 раз - в противоположную.
Частота 50 Гц принята для промышленного тока во многих странах мира.

Если напряжение на концах цепи меняется по гармоническому закону, то и напряженность электрического поля внутри проводников будет также меняться гармонически.
Эти гармонические изменения напряженности поля, в свою очередь, вызывают гармонические колебания силы тока.

Переменное напряжение создается генераторами электрического тока.
Проволочную рамку, вращающуюся в постоянном однородном магнитном поле - это простейшая модель генератора переменного тока.

Поток магнитной индукции Ф , пронизывающий проволочную рамку площадью S , пропорционален косинусу угла α между нормалью к рамке и вектором магнитной индукции


Ф = BS cos α .


При равномерном вращении рамки угол α увеличивается прямо пропорционально времени:


α = ωt


где
ω - угловая скорость вращения рамки.

Поток магнитной индукции меняется по гармоническому закону:


Ф = BS cos ωt


Здесь величина ω играет роль циклической частоты.

Согласно закону электромагнитной индукции ЭДС индукции в рамке равна взятой со знаком «-» скорости изменения потока магнитной индукции, т. е. производной потока магнитной индукции по времени:


е = -Ф" = -BS (cos ωt)" = BSω sin ωt = m sin ωt


где
m = BSω - амплитуда ЭДС индукции.

Если к рамке подключить колебательный контур, то угловая скорость ω вращения рамки определит частоту со колебаний значений ЭДС, напряжения на различных участках цепи и силы тока

Пусть вынужденные электрические колебания, происходят в цепях под действием напряжения, меняющегося с циклической частотой ω по закону синуса или косинуса:


u = U m sin ωt

u = U m cos ωt

где
U m - амплитуда напряжения, т. е. максимальное по модулю значение напряжения.

Если напряжение меняется с циклической частотой ω , то и сила тока в цепи будет меняться с той же частотой.
Но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения.
Поэтому в общем случае мгновенное значение силы тока в любой момент времени определяется по формуле


i = I m sin (ωt + φ с) .


где
I m - амплитуда силы тока, т. е. максимальное по модулю значение силы тока, а φ с - разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Переменный ток – это вынужденные электрические колебания Переменный ток, в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени. Пусть в цепи имеется источник тока, ЭДС которого изменяется периодически. — это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника Переменные токи далее считаются квазистационарными, т. е. к мгновенным значениям всех электрических величин применимы законы постоянного тока.

Может ли ток меняться со временем так, чтобы в каждый момент времени он был одинаков в каждой точке цепи? Ток, то есть направленное движение зарядов, вызывается электрическим полем. Поэтому время установления тока в цепи t определяется только скоростью распространения электрического поля, то есть скоростью света с (L — длина цепи): t = L/c Это время нужно сравнивать с характерным временем изменения электрического поля (напряжения источника тока). В случае периодической э. д. с. это время — просто период колебаний напряжения на э. д. с. Т. Например, в наших электрических сетях напряжение (и ток) колеблется с частотой 50 Гц, то есть 50 раз в секунду. Период колебаний составляет T = 0, 02 с. Пусть длина нашей цепи L = 100 м. Тогда отношение t /T составит примерно 10 -5 — именно такую очень небольшую относительную ошибку мы сделаем, если будем для нашей цепи с переменным током пользоваться законами постоянного тока. Переменный ток в цепи, для которой выполняется соотношение t<

Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому (синусоидальному) закону. I = I 0 ·sin(ω t+ φ), амплитуда колебаний частота колебаний фаза колебаний По теореме Фурье любое колебание можно представить как сумму гармонических колебаний. Таким образом, синусоидальные или гармонические колебания являются одновременно и самым важным, и самым простым типом колебаний.

Сопротивление в цепи переменного тока Пусть внешняя цепь имеет настолько малые индуктивность и емкость, что ими можно пренебречь. Пусть начальная фаза φ = 0. Ток через сопротивление изменяется по закону: I = I 0 · sin (ω t + φ) По закону Ома для цепи а Rδ: U = I·R = I 0 ·R·sin ω t. Таким образом, напряжение на концах участка цепи изменяется также по синусоидальному закону, причем разность фаз между колебаниями силы тока I и напряжения U равна нулю. Максимальное значение U равно: UU 00 R R = I= I 00 ·R·R При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.

Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения, а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:

Амплитуду колебаний напряжения в цепи переменного тока можно выразить через амплитудные значения напряжения на отдельных ее элементах, воспользовавшись методом векторных диаграмм. Выберем ось х диаграммы таким образом, чтобы вектор, изображающий колебания тока, был направлен вдоль этой оси. В дальнейшем мы будем называть ее осью токов. Метод векторных диаграмм I 0 Так как угол φ между колебаниями напряжения и тока на резисторе равен нулю, то вектор, изображающий колебания напряжения на сопротивлении R , будет направлен вдоль оси токов. Длина его равна I 0 · R.

Конденсатор в цепи переменного тока Рассмотрим процессы, протекающие в электрической цепи переменного тока с конденсатором. Пусть напряжение подано на емкость. Индуктивностью цепи и сопротивлением проводов пренебрегаем, поэтому напряжение на конденсаторе можно считать равным внешнему напряжению. φ А — φ В = U = q/C, но I = dq/dt, следовательно, dt. Iq I = I 0 · sin ω t ток меняется по закону, откуда 00 0 cossin qt. I dtt. Iq Постоянная интегрирования q 0 обозначает произвольный заряд, не связанный с колебаниями тока, поэтому можно считать q 0 =

) 2 sin(cos 000 t C I UТогда Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на π/2 (или колебания силы тока опережают по фазе колебания напряжения на π/2). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т. д. Физический смысл этого заключается в следующем: чтобы возникло напряжение на конденсаторе, должен натечь заряд за счет протекания тока в цепи. Отсюда происходит отставание напряжения от силы тока.

Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора (обозначается X C): Величина. C IU 1 00 а по закону Ома U = I · R C XC 1 играет роль сопротивления участка цепи Она называется кажущимся сопротивлением емкости (емкостное сопротивление). векторная диаграмма

Индуктивность в цепи переменного тока Пусть напряжение подается на концы катушки с индуктивностью L с пренебрежимо малым сопротивлением и емкостью. Индуктивность контура с током – это коэффициент пропорциональности между протекающим по контуру током и возникающем при этом магнитным потоком. Индуктивность L зависит от формы и размеров контура, а также свойств среды Ф = L · I. При наличии переменного тока в катушке индуктивности возникнет ЭДС самоиндукции Уравнение закона Ома запишется следующим образом: U = I · R – =0 ILФ

) 2 sin(cos]sin= π их сумма равна нулю, и остается только колебание напряжения на активном сопротивлении. Так как добротность обычных колебательных контуров больше единицы, то амплитуды напряжения U o. L и U o. C больше амплитуды напряжения на концах цепи U o.

Похожие публикации